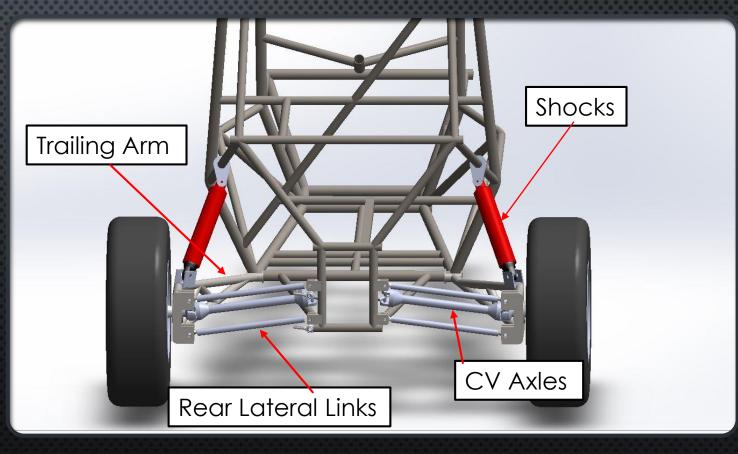
BAJA SAE FRONT END & REAR END

JACOB RUIZ WILL PRESTON AARON KING LUCAS CRAMER JAKE GRUDYNSKI MICHAEL EDIRMANNASINGHE JESSE SUMMERS

PROJECT DESCRIPTION


- SAE BAJA IS A COLLEGIATE COMPETITION IN WHICH TEAMS DESIGN, BUILD, AND TEST OFF-ROADING VEHICLES
- VEHICLES ARE PRESENTED IN COMPETITION TO A FICTITIOUS FIRM FOR POSSIBLE MANUFACTURING
- DESIGNS MUST ABIDE BY BAJA SAE COMPETITION RULES IN ORDER TO COMPETE
- MUST BE ABLE TO PERFORM WELL IN DYNAMIC AND STATIC EVENTS
 - Acceleration Test
 - Braking Test
 - o Hillclimb
 - Endurance
- SPONSORS INCLUDE W.L. GORE, NAU AND SAE INTERNATIONAL

DESIGN DESCRIPTION (REAR END)

• SUBSYSTEMS

- TRAILING ARM
 - CONNECT WHEEL TO VEHICLE
- REAR LATERAL LINKS
 - CONTROL WHEEL
 MOVEMENT
- Shocks
 - KEEP WHEELS ON GROUND
 - MAKE RIDE SMOOTHER
- CV AXLES
 - PROVIDE POWER TO WHEELS

DESIGN DESCRIPTION (FRONT END)

Subsystems

•Control Arms

•Connect wheel to vehicle

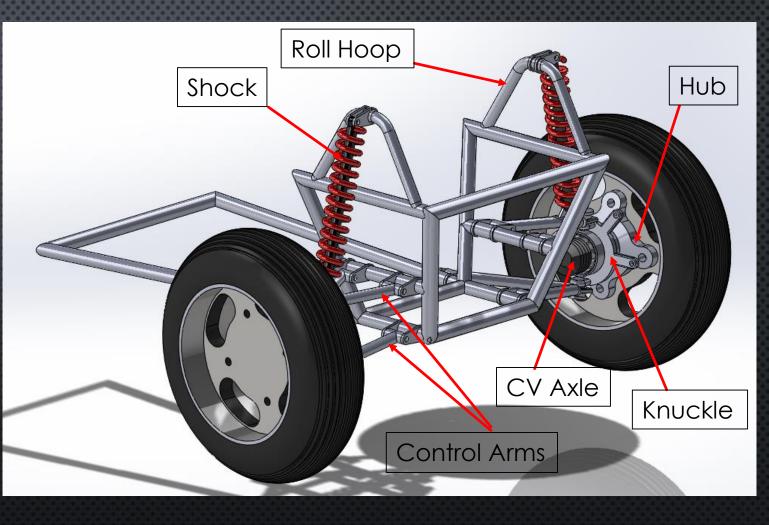
•Center wheel laterally

Shocks

•Keeps Wheels on ground

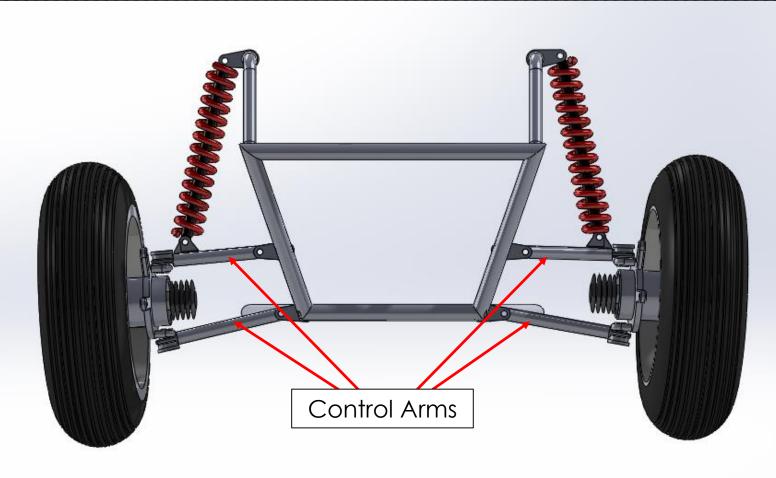
•Absorbs ground terrain

•Roll Hoop


•Upper shock mount

•CV Axles

Provides power to front wheelsHub


•Connects CV axle to wheel •Knuckle

•Connects CV axle, brakes, and steering tie rod to wheel

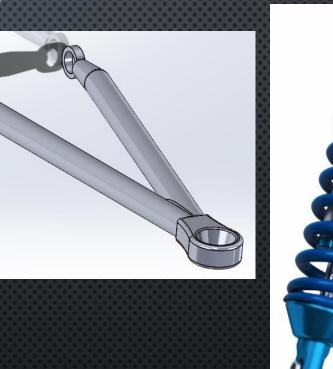
DESIGN DESCRIPTION (FRONT END)

Jacob Grudynski/11-5-19/SAE Baja/F1908 5

DESIGN REQUIREMENTS (FRONT & REAR END)

CR's How CR's Met

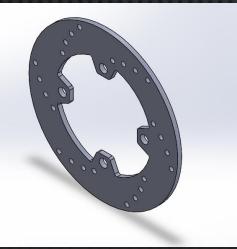
DESIGN VALIDATION (1 OF 3)


- FMEA
 - CV AXLE FAILURE
 - Twisted axle Strong material
 - BRAKE SYSTEM
 - MASTER CYLINDER LEAK INTEGRATED MASTER CYLINDER
 - BRAKE LINE RUPTURE STAINLESS STEEL BRAKE LINES
 - CONTROL ARMS
 - Weld or tube failure ensure strong welds through testing and accurate wall thickness in tubing
 - STEERING
 - RACK AND PINION FAILURE SEALED RACK AND PINION HOUSING

7

DESIGN VALIDATION (2 OF 3)

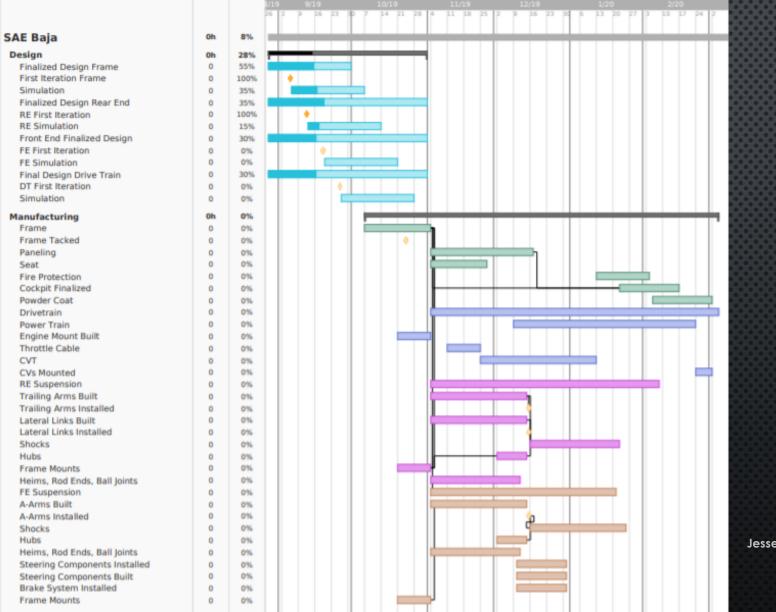
- CONTROL/TRAILING ARMS
 - DRIVING TESTS
 - WEIGHT TEST
 - MANEUVERABILITY TESTS
 - FEA
- SHOCKS
 - MOUNTING LOCATIONS (SAME PLANE)
 - Ensuring shock doesn't bind at current location
 - COMPRESSION TEST (PUSHING/PULLING)
 - HOOKE'S LAW: DEFLECTION PROPORTIONAL TO LOAD FORCE



DESIGN VALIDATION (3 OF 3)

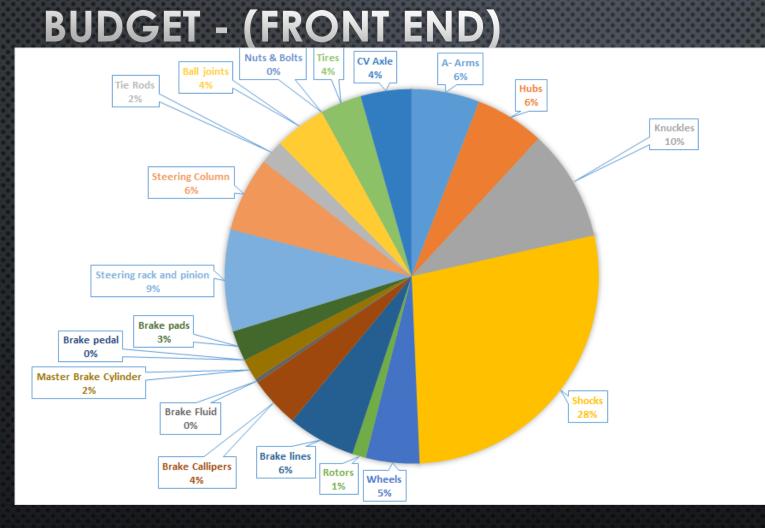
• Steering

- Ackermann Analysis Physical measurement of tire angles
- Rigorous steering on rough terrain Test the ability to withstand stresses



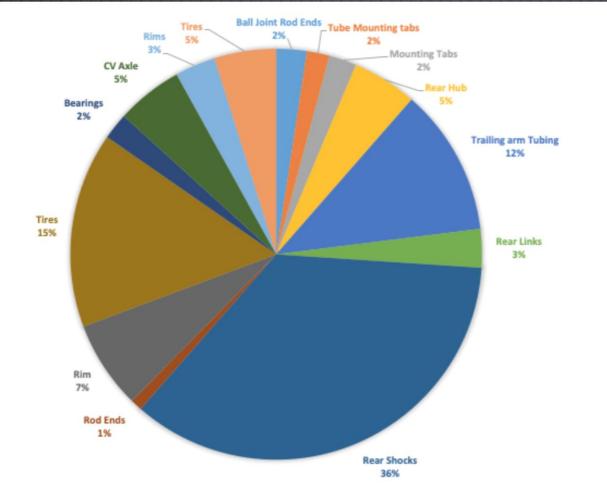
Brakes

- Pressure Test
 - Pascal's Law Hydraulic pressure is transmitted equally throughout fluid in closed system
- Dynamic Braking Test
 - Record stopping distance, brakes applied at max speed
 - Repeated tests of hard braking
 - Kinetic Energy Required braking force acting over stopping distance



SCHEDULE

Jesse Summers/11-5-19/SAE Baja/F1908 10


Allocated Budget: \$4000 Total expected Cost: \$3256.49 •

Jesse Summers/11-5-19/SAE Baja/F1908 11

•

BUDGET (REAR END)

Allocated Budget: \$3,000 Total Expected Cost: \$2,678

Lucas Cramer/11-5-19/SAE Baja/F1908 12

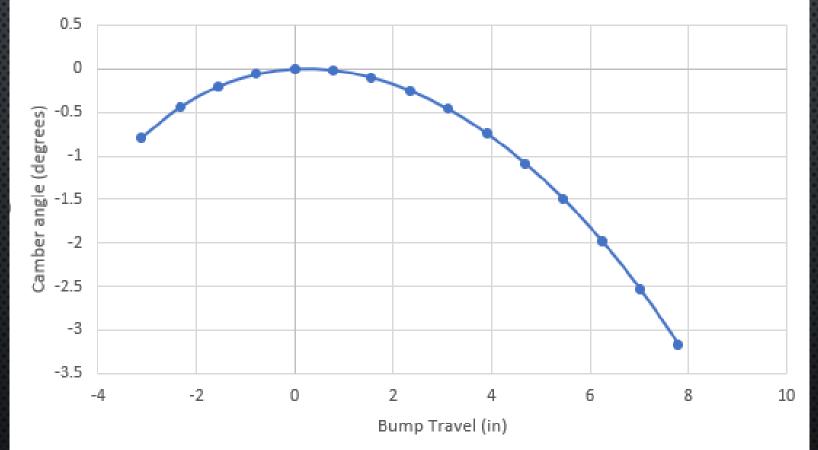
APPENDIX A – BRAKE FORCE ANALYSIS

Knowns & Assumptions			Component	Force Calculations				
Parameter Value Units		Parameter	Value	Units	Parameter	Value	Units	
Curb Weight	375	lbs	Rotor De	sign		Brake Pedal Force (Fp*lp)	700	bf
Fully Laden Weight (+250 lb Driver)	625	lbs	Front Rotor Diameter	7	in	Front Master Cylinder Pressure	2281.645264	psi
Weight Distribution (FRONT) (1-Y)	0.4		Front Rotor Mean Radius	3.2	in	Rear Master Cylinder Pressure	2281.645264	psi
Weight Distribution (REAR) (Y)	0.6		Rear Rotor Diameter	7	in	Front Caliper Force	2806.423675	5 lbf
Top Speed	35	mph	Rear Rotor Mean Radius	3.2	in	Rear Caliper Force	2806.423675	5 lbf
Top Speed (Downhill)	40	mph	Front Caliper	Design		Brake Line Pressure P_If (Front)	1825.316211	psi
Wheelbase	58	in	Number of Pistons	2	in	Brake Line Pressure P_Ir (Rear)	1825.316211	psi
Front Track Width	55	in	Piston Diameter	1.25	in	MC Bore Area (F)	0.3067961576	3 in^2
Rear Track Width	52	in	Single Piston Area	1.23	in^2	MC Bore Area (R)	0.3067961576	3 in^2
Ride Height	10	in	Total Piston Area	2.46	in^2	Brake Factor (BF)****	0.8	3
Tire Diameter	22	in	Rear Caliper	Design		Front Clamping Force Efficiency****	0.98	3
Rim Diameter	10	in	Number of Pistons	2	in	Front Clamping Force	5500.590403	Bibf
Rim Width	7	in	Piston Diameter	1.25	in	Rear Clamping Force Efficiency****	0.98	3
Average Pedal Force from Driver ****(1.4.1)	100	lbf	Single Piston Area	1.23	in	Rear Clamping Force	5500.590403	Bibf
Maximum Pedal Force	450	lbf	Total Piston Area	2.46	in	Friction Force (Front)	2200.236161	l lbf
Application Speed ****	3.5	ft/s	Master Cylinder	Dimensions		Friction Force (Rear)	2200.236161	l lbf
Theoretical Deceleration (fully laden), a (Ch.7, a = to tire-surfa	1	9	Bore Diameter (Front)***	0.625	in	Brake Rotor Torque (Front)	7040.755716	b lbf*in
Maximum Pedal Travel ****	3.5	in	Bore Diameter (Rear)***	0.625	in	Brake Rotor Torque (Rear)	7040.755716	b lbf*in
Pedal Force/ Deceleration Ratio ****	100	lbf/g	Max Pushrod Stroke	1.4	in	Force at 1x Front tire	640.0687014	lbf
Pedal Force Multiplier	6.2		Brake Pedal Di	mensions		Force at 1x Rear tire	640.0687014	lbf
Height of CG	22	in	Foot Plate to Pivot Point	9.3	in	Front Force (No Balance Bar)	1280.137403	B lbf
Factor of Safety (FS)	1.75		Pivot point to MC Pushrod	1.5	in	Rear Force (No Balance Bar)	640.0687014	lbf
4 Wheel Lock Force (Total Force)	1025.390625	lbf	Average Pedal Force from Driver	100	lbf	Total Braking Force	1920.206104	l lbf
Brake Bias			Maximum Pedal Force	450	lbf	Front Force (With Bias Bar)	1344.144273	BIDF
Front Split	0.7		Pedal Ratio (Ip)	7		Rear Force (With Bias Bar)	576.0618313	B lbf
Rear Split	0.3		Brake Pedal Material	Aluminum		4 Wheel Lock Total Force	1025.390625	5 lbf
Brake Pad Type			0 : (0			4 Wheel Lock Total Force (FS)	1794.433594	l lbf
Coefficient of Friction** 0.4		Sanity Checks						
Pad Area**	0.34	in^2	Will All 4 Wheels Lock?					
The constituted Decision of Second December of			Yes					
Theoretical Braking Force Required				·				
Parameter	Value	Units	Which Brakes will Lock First? Adjust bias accordingly.					
x (Ratio of Yog to Wheelbase)	0.3793103448 487.0689655		Rears					
Dynamic Front Axle Normal Force (F_zFdyn)				-				
Dynamic Rear Axle Normal Force (F_zRdyn) Surface Coeff. of Friction u (offroad tire on gravel/sand)	137.9310345 0.6		http://hpwizard.com/tire-friction-coefficient.l	et es l				
Axle Braking force F xf	292.2413793		nup.mpwizaro.com/tire-mction-coefficient.					
Axie Braking force F_xt Axie Braking force F_xt	292.2413793							
Front Traction Coeff. (U tf)	0.8982300885		*eq. 7-18b					
Rear Traction Coeff. (U_tr)	1.359375		*eq. 7-18a					
Front Braking Torque	1022.844828			kecalos html	^v = rw			
Rear Braking Torque	289.6551724				*v = rw			
Required Clamping Force (Front)	799.0975216					F_friction = u_bmr * F_clamping		
Required Clamping Force (Front)	226.2931034					F_friction = u_bmr * F_clamping		
Total Clamping Force Required	1025.390825		magazi www.engineeringinopiration.co.uk/bra	incodros.r/0111	moaon = r_n	oranioranicramping		
Inter Gramping Force Required	1020.390025							

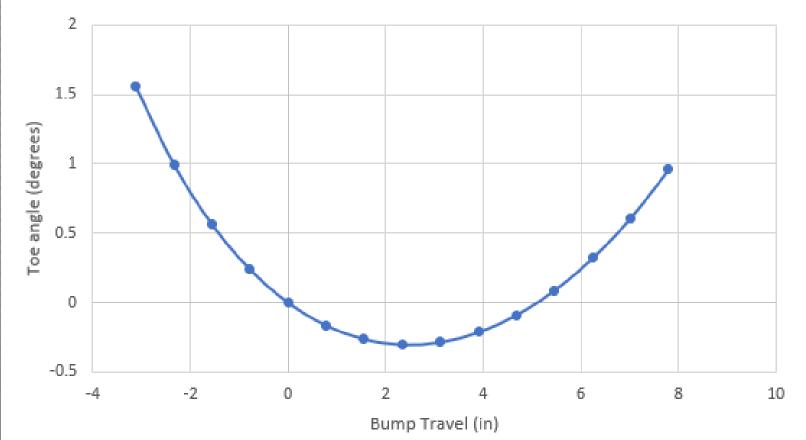
SAE INTERNATIONAL.

APPENDIX B – ACKERMANN ANALYSIS

an an gan an a					0000000000	00000000000	00000000000	
R	96	in						
	Track Width (in)							
	52		53		54		55	
Wheel base (in)	L	R	L	R	L	R	L	R
50	35.53767779	22.28558765	35.73216374	22.20347853	35.92850242	22.12194197	36.12671577	22.04097233
51	36.07601156	22.68652667	36.27170359	22.60325748	36.46923439	22.5205656	36.66862524	22.43844541
52	36.60707481	23.08513367	36.80388871	23.00072724	37.00252653	22.91690262	37.20300889	22.83365418
53	37.13092445	23.48139068	37.32877852	23.39586984	37.52844082	23.31093504	37.72993135	23.22658063
54	37.64762064	23.87528085	37.84643568	23.78866841	38.04704253	23.70264595	38.24946054	23.61720785
55	38.15722659	24.26678843	38.3569259	24.17910715	38.5583999	24.09201953	38.76166731	24.00551997
56	38.65980825	24.65589874	38.8603176	24.56717132	39.0625839	24.47904099	39.26662524	24.39150214
57	39.15543412	25.04259818	39.35668172	24.95284725	39.55966797	24.86369657	39.76441034	24.77514057
58	39.64417496	25.42687417	39.84609144	25.33612229	40.04972777	25.24597356	40.25510079	25.15642244
59	40.12610358	25.80871518	40.32862196	25.7169848	40.53284094	25.62586023	40.73877676	25.53533595
60	40.60129465	26.1881107	40.80435031	26.09542416	41.0090869	26.00334584	41.21552009	25.91187026
61	41.06982445	26.56505118	41.27335508	26.47143071	41.47854662	26.37842063	41.68541418	26.2860155
62	41.53177074	26.93952806	41.73571628	26.84499575	41.94130243	26.75107578	42.14854371	26.65776271
63	41.9872125	27.31153375	42.19151512	27.21611156	42.3974378	27.1213034	42.60499448	27.0271039
64	42.43622979	27.68106157	42.64083387	27.58477129	42.84703721	27.48909653	43.05485324	27.39403194
65	42.8789036	28.04810575	43.08375563	27.95096903	43.29018596	27.85444908	43.49820748	27.7585406
66	43.31531568	28.41266144	43.52036423	28.31469974	43.72696998	28.21735585	43.93514531	28.12062453


APPENDIX C – FAILURE MODES AND EFFECTS ANALYSIS

Component	Potential Failure Mode	Potential Effects of Failure	Severity (1-5)	Occurance (1-5)	Detection (1-5)	How Design Mitigated	Risk Priority Number
CV Axles	Binding joint	Tire locks up	4	2	1	Use durable and heavy duty boots to seal the binding joints	8
	Spline failure	No power to the wheel	5	3	3	Ensure power through CV axle is appropriate splines	45
	Twisted axle	Risk of breaking and damaging other parts	3	1	5	Diameter of axle must withstand power output	15
Brake System	Master cylinder leak	Decreased braking system pressure, pedal will not retract	5	2	5	Integrated master cylinder	50
	Seized Caliper piston	Vehicle pulls to one direction during braking/ partial system failure	4	2	4	Brake Bias system to redirect braking force to either axle	32
	Brake line leak or rupture	Decreased deceleration, brake system failure	5	3	4	Stainless steel Brake lines to resist abrasion, expansion	60
	Brake fluid boils	Reduced brake system pressure	3	3	4	DOT 4 Brake fluid, higher fluid boiling point	36
	Brake rotor thermal deformation	Vibrations in steering system feedback, decreased braking efficiency	3	3	4	Cross drilled and slotted rotors to improve heat dissipation	36
Control Arms	Ball joint seize	Suspension dampening loss, separation from wheel knuckle/hub	3	2	3	Big enough ball joint for weight of vehicle	18
	Weld failure	Complete control arm failure, arm component separation	5	3	4	Ensuring all welds are strong through testing	60
	Tube failure	Complete control arm failure	5	2	5	Thick enough wall on tubing	50
Steering	Steering column failure	Detachment of the driver to control the vehicle	3	2	5	Stress analysis performed on Steering Column	30
	External interfrence in rack and pinion	Jammed steering system	5	2	4	Sealed rack and pinion set up.	40
	Tie rod bending	Steering alignment will be off	5	2	3	Stress analysis conducted prior to mounting	30
Shocks	Binding mount	Reduced shock mobility	3	1	3	Mounting geometry correct for movement of shock	9
	Blown shock	Decreased damping ability, soft or stiff ride quality	3	3	3	Purchase capable shock for our vehicle weight	27


APPENDIX D – FRONT END GEOMETRY ALIGNMENT SPECIFICATIONS (CAMBER)

Camber Angle vs Bump Travel

APPENDIX E – FRONT END GEOMETRY ALIGNMENT SPECIFICATIONS (TOE ANGLE)

Toe Angle vs Bump Travel

